CsF-Catalyzed Nucleophilic Trifluoromethylation of *trans*-Enones with Trimethyl(trifluoromethyl)silane: A Facile Synthesis of *trans*-α-Trifluoromethyl Allylic Alcohols

LETTERS 1999 Vol. 1, No. 7 1047–1049

ORGANIC

Rajendra P. Singh, Robert L. Kirchmeier, and Jean'ne M. Shreeve*

Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343

jshreeve@uidaho.edu

Received July 21, 1999

ABSTRACT

$$R \xrightarrow{O} R' \xrightarrow{1. \text{TMS}-CF_3,} CF_3 \xrightarrow{OH} R' \xrightarrow{CF_3} R'$$

$$R = Ph, CH_3; R' = Ph, CH_3$$

Reactions of *trans*-enones, R-C=C-COR' (R = Ph, Me, -C=CH-CH=C-S; R' = Ph, Me, Et, CF₃) (1a–e), with TMS-CF₃ in the presence of catalytic amounts of cesium fluoride (CsF) in ethylene glycol dimethyl ether led to the formation of the corresponding *trans*- α -trifluoromethyl silyl ethers, $R-C=C-C(OSiMe_3)(CF_3)R'$ (R = Ph, Me, -C=CH-CH=C-S; R' = Ph, Me, Et, CF₃) (2a–e), in essentially quantitative yield. On hydrolysis with aqueous HCl, the corresponding *trans*- α -trifluoromethyl allylic alcohols, $R-C=C-C(OH)(CF_3)R'$ (R = Ph, Me, -C=CH-CH=C-S; R' = Ph, Me, Et, CF₃) (3a–e), were formed in >90% isolated yield. Under similar reaction conditions, 2-cyclohexen-1-one (1f) also gave trifluoromethyl allylic alcohols (3f) in 92% yield. The intermediates (2a–f) and products (3a–f) are liquids and were characterized by IR, ¹H, ¹⁹F and ¹³C NMR, MS, and high-resolution mass spectroscopy (HRMS).

Because fluorine is the most electronegative element and the van der Waals radius of fluorine is close to that of hydrogen, the introduction of a fluorine-containing group into an organic molecule brings about some remarkable changes in its physical and chemical properties.¹ In addition, novel reactivities are observed as a result of the introduction of fluorine or fluorinated groups into organic molecules. Many new fluorinated materials that take advantage of these useful changes, e.g., drugs and agrochemicals, have been designed² and synthesized.³

Allylic alcohols are particularly useful intermediates for the synthesis of biologically active compounds.⁴ Consequently, reactions leading to the formation of allylic alcohols, especially fluorinated alcohols are of great interest. A number of methods are available for the preparation of allylic alcohols,⁵ but techniques for the synthesis of α -trifluoromethyl allylic alcohols are rare.⁶ Shen et al. reported the synthesis of some α -trifluoromethyl allylic alcohols by the reaction of a ylide anion with aldehydes, but the yields were low (46–55%).⁶

^{(1) (}a) Welch, J. T. *Tetrahedron* **1987**, *43*, 3123. (b) Filler, R., Kobayashi, Y. Eds. *Biomedical Aspects of Fluorine Chemistry;* Kodansha Ltd., & Elsevier Biochemical: Tokyo and Amsterdam, 1982.

^{(2) (}a) Welch, J. T., Eswarakrishnan, S., Eds. *Fluorine in Bioorganic Chemistry*; John Wiley & Sons: New York, 1991. (b) Goldman, P. *Science* **1969**, *164*, 1123.

⁽³⁾ Hudlický, M.; Pavlath, A. E. Chemistry of Organic Fluorine Compounds II. A Critical Review; ACS Monograph 187; American Chemical Society: Washington, DC, 1995.

^{(4) (}a) Gardillo, G.; Orena, M.; Porzi, G.; Sandri, S. J. Chem. Soc., Chem. Commun. 1982, 1308. (b) Harding, K. E.; Stephens, R.; Hollingsworth, A. S. Tetrahedron Lett. 1984, 25, 2631. (c) Berkowitz, W. F.; Amarasekara, A. S. Tetrahedron Lett. 1985, 26, 3663. (d) Tamura, Y.; Annoura, H.; Fujioka, H. Tetrahedron Lett. 1987, 28, 5681.

⁽⁵⁾ Ono, N.; Kamimura, A.; Kaji, A. *Tetrahedron Lett.* **1984**, *25*, 5319 and references therein.

⁽⁶⁾ Shen, Y.; Wang, T. Tetrahedron Lett. 1989, 30, 7203.

Recently, we reported several highly successful new cesium fluoride-catalyzed nucleophilic trifluoromethylation reactions.^{7–10} We have now extended this chemistry to the facile synthesis of *trans*- α -trifluoromethyl allylic alcohols in excellent isolated yields by the CsF-catalyzed nucleophilic trifluoromethylation of enones with TMS–CF₃. Initially, we studied the optimization of the reaction conditions (Scheme 1) by using *trans*-chalcone (benzylideneacetophenone) (**1a**)

as a substrate. Reactants **1a** and TMS-CF₃ were dissolved in ethylene glycol dimethyl ether. The mixture was cooled to 0 °C, and a catalytic amount of CsF was added. The reaction mixture was allowed to warm slowly to room temperature over 1 h. The reaction was monitored by ¹⁹F NMR and was found to be complete in 3 h, giving the *trans*-1,1,1-trifluoro-2,4-diphenyl-3-buten-2-trimethylsilyl ether (**2a**)¹¹ intermediate, in 99% yield. Hydrolysis was carried out at room temperature with 6 N HCl for 3 h to form *trans*-1,1,1trifluoro-2,4-diphenyl-3-buten-2-ol (**3a**)¹² in 96% isolated yield. However, since at room temperature the reaction proceeded smoothly in ethylene glycol dimethyl ether over 3 h followed by acid hydrolysis to give the same product (**3a**) in 96% isolated yields, all further reactions were carried out at 25 °C. Using the same reaction conditions, *trans*-

(7) Singh, R. P.; Kirchmeier, R. L.; Shreeve, J. M. J. Org. Chem. 1999, 64, 2579.

(8) Singh, R. P.; Cao, G.; Kirchmeier, R. L.; Shreeve, J. M. J. Org. Chem. 1999, 64, 2873.

(9) Singh, R. P.; Vij, A.; Kirchmeier, R. L.; Shreeve, J. M. J. Fluorine. Chem. **1999**, in press.

(10) Singh, R. P.; Vij, A.; Kirchmeier, R. L.; Shreeve, J. M. Inorg. Chem. Submitted.

(11) Spectral data for **2a**: IR (neat) 1650 (s, C=C) cm⁻¹; ¹H NMR (CDCl₃) δ 0.19 (s, 9H), 6.04 (d, 1H, J = 16.3 Hz), 6.84 (d, 1H, J = 16.3 Hz), 7.40 (m, 8H), 7.64 (m, 2H); ¹³C NMR (CDCl₃) δ 2.0, 80.1 (q, $J_{C^{-C^{-F}}} = 28.8$ Hz), 125.2 (q, $J_{C^{-F}} = 286.4$ Hz), 126.9, 127.0, 128.0, 128.6, 128.7, 128.9, 135.4, 135.8, 138.1; ¹⁹F NMR (CDCl₃) δ -77.5 (s); MS (EI) m/z (species, rel int) 350 (M⁺, 30), 281 (M⁺ - CF₃, 98), 260 (M⁺ - Me₃-SiOH, 100), 73 (SiMe₃, 43).

(12) Spectral data for **3a**: IR (neat) 3545 (b, OH), 1651 (s, C=C) cm⁻¹; ¹H NMR (CDCl₃) δ 3.03 (s, broad, 1H), 6.82 (d, 1H, J = 16.1 Hz), 6.98 (d, 1H, J = 16.1 Hz), 7.44 (m, 8H), 7.75 (m, 2H); ¹³C NMR (CDCl₃) δ 77.7 (q, J_{C-C-F} = 29 Hz), 125.6 (q, J_{C-F} = 283 Hz), 126.5, 126.9, 127.0, 128.4, 128.7, 128.8, 128.9, 133.7, 135.6, 137.5; ¹⁹F NMR (CDCl₃) δ -78.7 (s); MS (EI) m/z (species, rel int) 278 (M⁺, 10), 260 (M⁺ - H₂O, 3), 209 (M⁺ - CF₃, 100), 103 (PhCH=CH, 36), 77 (Ph, 7); HRMS calcd for C₁₆H₁₃F₃O 278.0918, found 278.0898. Anal. Calcd for C₁₆H₁₃F₃O: C, 69.06; H, 4.71. Found: C, 69.02; H, 4.69. enones 1b-e were reacted with TMS-CF₃ in the presence of catalytic amounts of CsF to give the corresponding α -trifluoromethyl silyl ethers 2b-e. Hydrolysis of the silyl ethers with 6 N HCl at room temperature formed the α -trifluoromethyl allylic alcohols 3b-e (Scheme 1) in >90% isolated yield (Table 1). We also found that cyclic enones, such as 2-cyclohexen-1-one (1f), reacted in an identical fashion with TMS-CF₃ and 6 N HCl to give the trifluoromethylated allylic alcohol (3f).

Table 1.	Trifluoromethy	vlation of	of Enones	with	TMS-CF ₃
	111100101110011	,			

^{*a*} All reactions were carried out with 5 mmol of substrate, 5.25 mmol of TMS-CF₃, and 0.1 mmol of CsF in 5 mL of ethylene glycol dimethyl ether. ^{*b*} Isolated.

The nucleophilic reaction mechanism for the trifluoromethylation of these *trans*-enones with TMS-CF₃ is most likely the same as that reported for ketones.¹³

The *trans*- α -trifluoromethyl allylic alcohols that we have prepared (Table 1) are liquids. They are soluble in common organic solvents and very stable to air and moisture. The liquid-phase infrared spectra of **3a**-**f** showed a broad peak in the region 3300–3600 cm⁻¹ due to the ν (OH) vibration and a sharp peak in the region 1630–1690 cm⁻¹ arising from the (C=C) stretching vibration. In the ¹⁹F NMR spectra, a single peak was observed in all cases in the range from δ -83 to -77 for the CF₃ moiety. ¹H NMR spectra for **3a**-**f** clearly showed the presence of the hydroxyl proton. This resonance disappeared upon addition of D₂O. In the ¹³C NMR spectra, the α -C=O peak that appeared at δ 199 in **1a** shifted upfield to δ 77.7 in **3a**. This resonance appears as a quartet

⁽¹³⁾ Krishnamurti, R.; Bellew, D. R.; Prakash, G. K. S. J. Org. Chem. **1991**, *56*, 984.

with $J_{C-C-F} = 29$ Hz. This upfield shift resulted from the formation of the OH group and introduction of the CF₃ moiety. The CF₃ carbon appeared as a quartet at about δ 125.6 for **3a** with $J_{C-F} = 283$ Hz. Similar results were observed in the ¹³C NMR spectra of **3b**-f.

In summary, we have developed a very efficient method for the synthesis of $trans-\alpha$ -trifluoromethyl allylic alcohols via the direct nucleophilic trifluoromethylation of *trans*enones with TMS-CF₃. The reaction is very selective. Reaction conditions are very mild, and the isolated yields are excellent. Acknowledgment. This work was supported by the National Science Foundation (Grant No. CHE-9720365). We would like to thank Dr. Gary Knerr for obtaining HRMS.

Supporting Information Available: Experimental procedure and characterization data for compounds **2b**–**f** and **3b**–**f**; IR, NMR (¹H, ¹³C and ¹⁹F), MS. High-resolution mass spectroscopic (HRMS) data for **2e**, **3b**, **3c**, and **3e**.

OL990844R